Individual differences in artificial intelligence literacy among university students Attitudes, self-efficacy, and demographic factors
Main Article Content
Abstract
This study explored university students’ artificial intelligence (AI) use across multiple European contexts, with a focus on key AI use dimensions, their application in learning, and individual differences. Using a non-representative convenience sample (N = 226), data were collected through a 15-construct questionnaire. Key findings revealed that students exhibited high levels of awareness in dimensions like Ethics and Responsibility, while reporting moderate to low engagement in General attitude and Study-use attitude, highlighting gaps in AI integration within educational routines. Notably, teachers’ influence was rated the lowest, signalling limited institutional support for AI-driven learning. A regression analysis identified four major predictors of Study-use attitude: positive General attitude and Perceived effectiveness boosted AI integration in learning, while Responsibility had a slight negative effect. Self-efficacy emerged as the strongest positive predictor, pointing towards the importance of confidence in tool selection and application for broader adoption. Several significant individual differences were observed in the sample. Male students reported higher scores in Experience, Study-use attitude, and Self-efficacy. Younger students displayed better Conceptual knowledge, while older students demonstrated greater Willingness to learn about them. Students in business disciplines outperformed their counterparts in humanities and education in both Experience and Reliability. Part-time students showed higher Responsibility and Ethics scores, whereas full-time students exhibited stronger Conceptual knowledge. These findings align with previous studies on AI literacy and highlight the need for tailored interventions to address gaps in AI integration and competence in education. Future research should examine longitudinal changes in AI literacy and the role of educators’ AI literacy in shaping students’ perceptions and practices. Enhanced focus on curriculum development for both bachelor’s and master’s programs is recommended to ensure comprehensive AI literacy training.
Downloads
Article Details
References
An, X., Chai, C. S., Li, Y., Zhou, Y., Shen, X., Zheng, C., & Chen, M. (2022). Modeling English teachers’ behavioral intention to use artificial intelligence in middle schools. Education and Information Technologies, 28(5), 5187–5208. https://doi.org/10.1007/s10639-022-11286-z
APA [American Psychological Association]. (2019) Publication Manual of the American Psychological Association: The Official Guide to APA Style (7th ed). American Psychological Association.
Armutat, S., Wattenberg, M., & Mauritz, N. (2024). Artificial intelligence – Gender-specific differences in perception, understanding, and training interest. International Conference on Gender Research, 7(1), 36–43. https://doi.org/10.34190/icgr.7.1.2163
Chien, A. A., Lin, L., Nguyen, H., Rao, V., Sharma, T., & Wijayawardana, R. (2023). Reducing the carbon impact of generative AI inference (today and in 2035). HotCarbon ’23: Proceedings of the 2nd Workshop on Sustainable Computer Systems, 11(7), 1–7. https://doi.org/10.1145/3604930.3605705
Colby, K. M., Weber, S., & Hilf, F. D. (1971). Artificial paranoia. Artificial Intelligence, 2, 1–25.
Csizér, K., Albert, Á., & Piniel, K. (2021). The interrelationship of language learning autonomy, self-efficacy, motivation and emotions: The investigation of Hungarian secondary school students. In M. Pawlak (Szerk.), Investigating individual learner differences in second language learning (pp. 1–21). Springer Cham. https://doi.org/10.1007/978-3-030-75726-7_1
Csizér, K., & Fekete, I. (2024, február 9.). Students’ autonomous use of technology in learning and using foreign languages: A theoretical framework [Konferenciaelőadás]. Oktatás, Informatika, Pedagógia 2024 Konferencia, Debrecen, Hungary.
Dakakni, D., & Safa, N. (2023). Artificial intelligence in the L2 classroom: Implications and challenges on ethics and equity in higher education: A 21st century Pandora’s box. Computers and Education: Artificial Intelligence, 5, 100179. https://doi.org/10.1016/j.caeai.2023.100179
Dörnyei, Z., & Csizér, K. (2012). How to design and analyze surveys in SLA research? In A. Mackey & S. M. Gass (Szerk.), Research methods in second language acquisition: A practical guide (pp. 74–94). Wiley-Blackwell.
Eurobarometer. (2017). Attitudes towards the impact of digitisation and automation on daily life: Report. Publications Office of the European Union. https://doi.org/10.2759/835661
Fekete, I. (2023). Technology in English teaching: The Hungarian university context. Akadémiai Kiadó. https://doi.org/10.1556/9789634548706
Fekete, I., Folmeg, M., & Kóris, R. (2024). Lehetőségek a mesterséges intelligencia autonóm tanulói használatára a felsőoktatásban: Három eset bemutatása. In Zs. Géring (Szerk.), FHERC tanulmánykötet I.: Digitalizáció a felsőoktatásban (pp. 48–59). Budapest Business University. https://doi.org/10.29180/978-615-6342-88-1
Folgieri, R., Gil, M., Bait, M., & Lucchiari, C. (2024). AI-powered personalised learning platforms for EFL learning: Preliminary results. In O. Poquet, A. Ortega-Arranz, O. Viberg, I.-A. Chounta, B. McLaren, & J. Jovanovic (Szerk.), Proceedings of the 16th International Conference on Computer Supported Education. SCITEPRESS - Science and Technology Publications. https://doi.org/10.5220/0012672000003693
Folmeg, M., Fekete, I., & Koris, R. (2024). Towards identifying the components of students’ AI literacy: An exploratory study based on Hungarian higher education students’ perceptions. Journal of University Teaching and Learning Practice, 21(6). https://doi.org/10.53761/wzyrwj33
García-Peñalvo, F., & Vázquez-Ingelmo, A. (2023). What do we mean by GenAI? A systematic mapping of the evolution, trends, and techniques involved in generative AI. International Journal of Interactive Multimedia and Artificial Intelligence, 8(4), 7. https://doi.org/10.9781/ijimai.2023.07.006
Hmoud, M., Swaity, H., Hamad, N., Karram, O., & Daher, W. (2024). Higher education students’ task motivation in the generative artificial intelligence context: The case of ChatGPT. Information, 15, 33. https://doi.org/10.3390/info15010033
Hryciw, B. N., Seely, A. J. E., & Kyeremanteng, K. (2023). Guiding principles and proposed classification system for the responsible adoption of artificial intelligence in scientific writing in medicine. Frontiers in Artificial Intelligence, 6. https://doi.org/10.3389/frai.2023.1283353
Leaver, T., & Srdarov, S. (2023). ChatGPT isn’t magic: The hype and hypocrisy of generative artificial intelligence (AI) rhetoric. M/C Journal, 26(5). https://doi.org/10.5204/mcj.3004
Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x
Nazari, M., & Saadi, G. (2024). Developing effective prompts to improve communication with ChatGPT: A formula for higher education stakeholders. Discover Education, 3(1). https://doi.org/10.1007/s44217-024-00122-w
Ng, D. T. K., Leung, J. K. L., Su, J., Ng, R. C. W., & Chu, S. K. W. (2023). Teachers’ AI digital competencies and twenty-first century skills in the post-pandemic world. Educational Technology Research and Development, 71(1), 137–161. https://doi.org/10.1007/s11423-023-10203-6
OECD. (2024). Recommendation of the Council on Artificial Intelligence. https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449
Parker, L., Carter, C., Karakas, A., Loper, A. J., & Sokkar, A. (2024). Graduate instructors navigating the AI frontier: The role of ChatGPT in higher education. Computers and Education Open, 6, 100166. https://doi.org/10.1016/j.caeo.2024.100166
Pokrivcakova, S. (2023). Pre-service teachers’ attitudes towards artificial intelligence and its integration into EFL teaching and learning. Journal of Language and Cultural Education, 11(3), 100–114. https://doi.org/10.2478/jolace-2023-0031
Pretorius, L. (2023). Fostering AI literacy: A teaching practice reflection. Journal of Academic Language and Learning, 17(1), T1–T8. https://journal.aall.org.au/index.php/jall/article/view/891
Rajki, Z., Nagy, T., & Dringó-Horváth, I. (2024). A mesterséges intelligencia a felsőoktatásban: Hallgatói hozzáférés, attitűd és felhasználási gyakorlat. Iskolakultúra, 34(7), 3–22. https://doi.org/10.14232/iskkult.2024.7.3
Redecker, C. (2017). European framework for the digital competence of educators. Publication Office of the European Union. https://doi.org/10.2760/178382
Sándor, E., & Vékási, A. (2024). Az idegen nyelvi íráskészség fejlesztése és az autonóm tanulás az angol szaknyelvi órán a gazdasági felsőoktatásban a mesterséges intelligencia segítségével. In Zs. Géring (Ed.), FHERC tanulmánykötet I.: Digitalizáció a felsőoktatásban (pp. 110–130). Budapest Business University. https://doi.org/10.29180/978-615-6342-88-1
Schmidt, T., & Strassner, T. (2022). Artificial intelligence in foreign language learning and teaching. Anglistik: International Journal of English Studies, 33(1), 165–184. https://doi.org/10.33675/angl/2022/1/14
Snyder, K. (2023). We asked ChatGPT to write performance reviews and they are wildly sexist (and racist). Fast Company. https://www.fastcompany.com/90844066/chatgpt-write-performance-reviews-sexist-and-racist
Sullivan, M., Kelly, A., & McLaughlan, P. (2023). ChatGPT in higher education: Considerations for academic integrity and student learning. Journal of Applied Learning & Teaching, 6(1), 31–40. https://doi.org/10.37074/jalt.2023.6.1.17
Turing, A. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460.
UNICEF. (2021). Policy guidance on AI for children. https://www.unicef.org/globalinsight/media/2356/file/UNICEF-Global-Insight-policy-guidance-AI-children-2.0-2021.pdf
Vuorikari, R., Kluzer, S., & Punie, Y. (2022). DigComp 2.2: The digital competence framework for citizens: With new examples of knowledge, skills and attitudes. Publication Office of the European Union. https://doi.org/10.2760/115376
Weizenbaum, J. (1966). ELIZA: A computer program for the study of natural language communication between man and machine. Computational Linguistics, 9(1), 36–45.
Yurt, E., & Kasarci, I. (2024). A questionnaire of artificial intelligence use motives: A contribution to investigating the connection between AI and motivation. International Journal of Technology in Education, 7(2), 308–325. https://doi.org/10.46328/ijte.725